
Regression of a Stock Market Dataset
Nov 2017

Eduardo Guilherme Ferreira Morais de Araújo
Instituto Superior Técnico, Universidade de Lisboa

Lisboa, Portugal
eduardo.araujo@tecnico.ulisboa.pt

1. Introduction

The current document presents the developed work
in the scope of Intelligent Systems discipline, where a
regression problem was solved using a fuzzy modelling
approach, for which a fuzzy model was derived and its
parameters optimized.
The dataset used was downloaded from the KEEL

Dataset Repository and concerns daily stock prices for
ten aerospace companies. The task was to approximate
the price of the 10th company given the prices of the
rest.
To model the fuzzy inference system a type-1 Takagi-

Sugeno model was employed, using the Gustafson-Kessel
(GK) as clustering algorithm.
The algorithmic work was implemented resorting to

both Jáno’s Fuzzy Clustering and Data Analysis Toolbox
and Babuska’s Fuzzy Identification Toolbox.

2. Regression Problem

2.1. Dataset Description

The dataset is composed of daily stock prices from
January 1988 through October 1991, for ten aerospace
companies.
There are 950 instances, with no data missing and 9

features labelled Company i, with i = 1, 2, 3 ... 9.

2.2. Dataset Partitioning

Since the problem at hand is a regression problem its
dynamics in time had to be taken into account. To this
end data was divided into groups of 9 equally spaced
sets (∆t), which was then subdivided into two groups:
training (70%) and testing (30%), as shown in figure 1.

3. Fuzzy Modelling

3.1. Takagi-Sugeno Model

The Tsukagi-Sugeno fuzzy models (also known as
TS fuzzy models) are characterized by the fact that
their consequents are linear functions of the antecedent
variables instead of fuzzy sets.
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Figure 1. Data Partitioning

The rule base in MISO TS models have the following
structure,

Rk : If x1is Ak
1and x2is A

k
2 and ... and xnis Ak

n then

yk =

n∑
j=1

akjxj + bk

where Rk is the kth rule in the rule-base, x1, ..., xn
are the premise variables, yk is the output of the kth
rule and Ak

1 , ..., A
k
n are the fuzzy sets defined over their

respective universes of discourse.
Since each rule has a crisp output, the overall output

is obtained via weighted sum of each of the rule
consequents, given by

y∗ =

∑K
k=1 y

kβk∑K
k=1 β

k
(1)

where K is the total number of rules, βk is the non-
normalized degree of fulfilment of the kth rule premise
and yk is the output of rule k.[1]

3.2. Clustering Methods
Clustering is an unsupervised learning task that aims

at decomposing a given set of objects into subgroups

1

mailto:eduardo.araujo@tecnico.ulisboa.pt


or clusters based on similarity. It is primarily a tool
for discovering previously hidden structure in a set of
unordered objects, which implies one assumes that a
‘true’ or natural grouping exists in the data [3].
The number of clusters determines the number of

rules in the obtained fuzzy model. Thus this parameter
heavily influences the accuracy and transparency of the
fuzzy models [1].
Since the Gustafson–Kessel Algorithm is usually pre-

ferred when clustering is applied for the generation
of fuzzy rule systems [3], this was the algorithm used
throughout the analysis.
1) Gustafson-Kessel Algorithm: The Gustafson–Kessel

algorithm extends the Fuzzy c-means, replacing the
Euclidean distance by a cluster-specific Mahalanobis
distance (Eq. 3), so as to adapt to various sizes and forms
of the clusters.[3]
The algorithm can be expressed as follows

J(X,U, V,A) =

c∑
i=1

N∑
k=1

(µi,k)mD2
i,kAi

(2)

where

D2
i,kAi

= (xk − vi)TAi(xk − vi), (3)
1 ≤ i ≤ c, (4)
1 ≤ k ≤ N (5)

the matrices Ai are used as optimization variables,
which allow each cluster to adapt the distance norm to
the local topological structure of the data.
In order to minimize J, Ai has to be made less

positive definite. Allowing the matrix Ai to vary with its
determinant fixed corresponds to optimizing the cluster’s
shape while its volume remains constant.

Ai = |Fi|
1

(n+1)F−1
i , (6)

Fi =

∑N
k=1(µi,k)m(xk − vi)(x− k − vi)∑N

k=1(µi,k)m
(7)

where Fi represents the fuzzy covariance matrix. [6]

3.3. Parameter Estimation

Clustering algorithms always fit the clusters to the
data, even if the cluster structure is not adequate for the
problem [3] .
Unfortunately, fuzzy clustering algorithms do not give

any indication of the correct number of clusters needed.
For this reason the conventional approach to determine
a correct number of clusters in cluster analysis is based
on validity measures.[1]
1) Validity Measures: From [5? ] 4 validity measures

were used and are presented in the following paragraphs.

1) Partition Index (SC): The SC (Eq. 8) is the ratio
of the sum of compactness and separation of clusters.
It is useful when comparing different cluster partitions
which have equal number of clusters. A better partition
is given by a smaller value of SC.

SC(c) =

c∑
i=1

∑n
k=1 U

m
ik ‖xk − vi‖2

ni
∑c

q=1 ‖vq − vi‖2
(8)

2) Separation Index (S): The S (Eq. 9) uses a mini-
mum distance separation for partition validity, contrary
to SC. A better partition is as well given by a smaller
value of S.

S(c) =

c∑
i=1

∑n
k=1 U

m
ik ‖xk − vi‖2

n miniq‖vq − vi‖2
(9)

3) Xie and Beni’s Index (XB): The XB (Eq. 10) intend
to quantify the ratio of the total variation within clusters
and their separation. The optimal number of clusters is
given by the resulting smaller value.

XB(c) =

c∑
i=1

∑n
k=1 U

m
ik ‖xk − vi‖2

n minik‖xk − vi‖2
(10)

4) Variance Accounted For (VAF): Variance ac-
counted for (VAF) (Eq. 11) determines the percentile
variance measured between two signals and is given by

V AF = 100× Cov(y − y∗)
Cov(y)

(11)

where y is the measured data and y∗ the model output.

4. Methodology
To determine a suitable number of clusters (c) for

which to optimize the model, a large amount of sim-
ulations was done varying c, and m, to check how its
performance behaved.

The methodology adopted consisted on varying the
values of the afore mentioned parameters from 2 up to
20, followed by a selection based on the mean value of
VAF. The methodology is schematically represented in
figure 2.

5. Results
5.1. Clustering
Figures 3 and 4 present the results obtained using the

different validity measures.
It is clear the model’s performance gets better as the

number of clusters increases. Although this result was
to be expected, one of the great advantages of working
with fuzzy models is the balance between performance
and transparency. Thus, noting that from figures 3 and
4 the best choice was to set c = 5 and m = 2.
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Figure 2. Methodology Employed

2 4 6 8 10 12 14 16 18 20

Number of clusters

0

1

2

In
de

x 
V

al
ue

Xie and Beni Index

2 4 6 8 10 12 14 16 18 20

Number of clusters

0

1

2

In
de

x 
V

al
ue

×10-4

Separation Index

2 4 6 8 10 12 14 16 18 20

Number of clusters

0

0.05

0.1

In
de

x 
V

al
ue

Partition Index

Figure 3. Results for different Validity Indexes

5.2. Fuzzy Model
As can be seen from figure 5 there are clearly 5

main groups of data, with some variability in size and
compactness.
Looking now at the membership functions presented

in figure 5.2 it is not only clear the reduction in
complexity but also the relationship between it has with
figure 5.
Finally figure 5.2 shows the comparison between the

process and the model’s behaviour.
Making use of the function fm2tex it was possible to
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Figure 4. Number of clusters vs Performance
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Figure 5. Clusters configuration for c = 5

have much more information about the model devel-
oped. For the sake of brevity, those informations can be
consulted in Appendix 6.
Although, it is worth noting that from a batch of

200 simulations, the average VAF registered was 94.84%,
which is a very good result taking into account the
process to be identified is somewhat non-causal, since
the system’s output does not depend exclusively on the
inputs.

References
[1] Joao M. C. Sousa, Uzay Kaymak, Fuzzy Decision Making in

Modelling and Control. 2002 World Scientific and Imperial College
Editors, 2002.

[2] J.-S. Jang, C.-T., Sun and E. Mizutani A Computational Approach to
Learning and Machine Intelligence. 1997 Prentice Hall, New Jersey

[3] J. Valente de Oliveira, W. Pedrycz, Advances in Fuzzy Clustering
and its Applications. John Wiley & Sons Ltd

[4] Robert Babuska, Fuzzy Modeling for Control. 1998 Kluwer Aca-
demic Publishers

3



20 30 40 50 60

Company 1

0
0.5

1

µ

20 30 40 50 60

Company 2

0
0.5

1

µ

14 16 18 20 22 24

Company 3

0
0.5

1
µ

35 40 45 50 55 60

Company 4

0
0.5

1

µ

30 40 50 60 70 80 90

Company 5

0
0.5

1

µ

15 20 25 30 35

Company 6

0
0.5

1

µ

60 65 70 75 80 85

Company 7

0
0.5

1

µ

18 20 22 24 26 28

Company 8

0
0.5

1

µ

35 40 45 50

Company 9

0
0.5

1

µ

Figure 6. Membership Functions
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6. Appendix - fm2tex Results
The output-specific parameters are given in the following table.

Table 1
Model parameters.

output antecedent c m ny nu
1 2 5 2.2 {{ [ ] }, {{ [ 0 ] [ 0 ] [ 0 ] [ 0 ] [ 0 ] [ 0 ] [ 0 ] [ 0 ] [ 0 ] },

{ [ ] }} { [ 0 ] [ 0 ] [ 0 ] [ 0 ] [ 0 ] [ 0 ] [ 0 ] [ 0 ] [ 0 ] }}

In the following, the output-specific information is shown for each output.
Output1:
Rules:

1.u1A11 & u2A12 & u3A13 & u4A14 & u5A15 & u6A16 & u7A17 & u8A18 & u9A19

y(k) = 3.9 · 10e−1u1 + 4.6 · 10e−1u2 − 5.8 · 10e−1u3 + 2.8 · 10e−1u4 + 9.9 · 10e−2u5 − 4.9 · 10e−1u6 + 4.5 · 10e−1u7 − 1.8 · 10e−1u8 + 1.1 · 10e−1u9 − 1.8 · 10e+1

2.u1A21 & u2A22 & u3A23 & u4A24 & u5A25 & u6A26 & u7A27 & u8A28 & u9A29

y(k) = 6.1 · 10e−1u1 + 2.2 · 10e−1u2 + 1.8 · 10e−1u3 + 3.3 · 10e−1u4 + 2.4 · 10e−1u5 − 6.2 · 10e−1u6 + 1.4 · 10e−1u7 − 3.5 · 10e−1u8 + 3.8 · 10e−1u9 − 2.3 · 10e+1

3.u1A31 & u2A32 & u3A33 & u4A34 & u5A35 & u6A36 & u7A37 & u8A38 & u9A39

y(k) = 4.4 · 10e−1u1 + 3.1 · 10e−1u2 + 1.0 · 10e−2u3 + 1.0 · 10e−1u4 − 1.9 · 10e−1u5 − 6.8 · 10e−2u6 − 2.1 · 10e−1u7 − 2.8 · 10e−2u8 + 7.9 · 10e−1u9 + 9.5 · 10e+

4.u1A41 & u2A42 & u3A43 & u4A44 & u5A45 & u6A46 & u7A47 & u8A48 & u9A49

y(k) = 1.3 · 10e−1u1 − 1.5 · 10e−1u2 + 5.1 · 10e−2u3 − 2.0 · 10e−1u4 − 3.8 · 10e−2u5 + 2.1 · 10e−1u6 + 1.9 · 10e−1u7 + 3.3 · 10e−1u8 + 2.3 · 10e−1u9 + 1.7 · 10e+1

5.u1A51 & u2A52 & u3A53 & u4A54 & u5A55 & u6A56 & u7A57 & u8A58 & u9A59

y(k) = 5.0 · 10e−1u1 + 5.0 · 10e−1u2 − 4.1 · 10e−1u3 + 4.6 · 10e−1u4 + 1.5 · 10e−2u5 − 2.5 · 10e−1u6 − 4.1 · 10e−1u7 − 2.6 · 10e−2u8 − 8.6 · 10e−2u9 + 3.4 · 10e+1

Table 2
Consequent parameters.

rule u1 u2 u3 u4 u5 u6 u7 u8 u9 offset
1 3.9 · 10e−1 4.6 · 10e−1 −5.8 · 10e−1 2.8 · 10e−1 9.9 · 10e−2 −4.9 · 10e−1 4.5 · 10e−1 −1.8 · 10e−1 1.1 · 10e−1 −1.8 · 10e+1

2 6.1 · 10e−1 2.2 · 10e−1 1.8 · 10e−1 3.3 · 10e−1 2.4 · 10e−1 −6.2 · 10e−1 1.4 · 10e−1 −3.5 · 10e−1 3.8 · 10e−1 −2.3 · 10e+1

3 4.4 · 10e−1 3.1 · 10e−1 1.0 · 10e−2 1.0 · 10e−1 −1.9 · 10e−1 −6.8 · 10e−2 −2.1 · 10e−1 −2.8 · 10e−2 7.9 · 10e−1 9.5 · 10e+

4 1.3 · 10e−1 −1.5 · 10e−1 5.1 · 10e−2 −2.0 · 10e−1 −3.8 · 10e−2 2.1 · 10e−1 1.9 · 10e−1 3.3 · 10e−1 2.3 · 10e−1 1.7 · 10e+1

5 5.0 · 10e−1 5.0 · 10e−1 −4.1 · 10e−1 4.6 · 10e−1 1.5 · 10e−2 −2.5 · 10e−1 −4.1 · 10e−1 −2.6 · 10e−2 −8.6 · 10e−2 3.4 · 10e+1

Table 3
Cluster centers.

rule u1 u2 u3 u4 u5 u6 u7 u8 u9
1 2.9 · 10e+1 5.1 · 10e+1 2.0 · 10e+1 4.2 · 10e+1 7.8 · 10e+1 2.8 · 10e+1 6.8 · 10e+1 2.1 · 10e+1 4.4 · 10e+1

2 3.0 · 10e+1 4.7 · 10e+1 1.8 · 10e+1 4.3 · 10e+1 5.9 · 10e+1 2.4 · 10e+1 6.6 · 10e+1 2.0 · 10e+1 4.7 · 10e+1

3 3.6 · 10e+1 5.4 · 10e+1 2.0 · 10e+1 4.8 · 10e+1 7.1 · 10e+1 2.4 · 10e+1 7.6 · 10e+1 2.3 · 10e+1 4.6 · 10e+1

4 4.6 · 10e+1 3.8 · 10e+1 1.7 · 10e+1 5.4 · 10e+1 5.0 · 10e+1 2.5 · 10e+1 8.0 · 10e+1 2.6 · 10e+1 4.1 · 10e+1

5 4.9 · 10e+1 3.2 · 10e+1 1.6 · 10e+1 4.2 · 10e+1 4.7 · 10e+1 1.7 · 10e+1 6.5 · 10e+1 2.5 · 10e+1 4.3 · 10e+1
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