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1. Introduction

Recent advancements in reinforcement learning (RL)
confirm that RL techniques [8], combined with deep
learning [9], can solve challenging problems ranging from
game playing [12, 16] to robotics [10]. Particularly, RL
proved to be a powerful tool for solving single agent
Markov Decision Processes (MDP’s), where modelling or
predicting the behaviour of other actors in the environ-
ment is largely unnecessary [17].
Multi-agent systems, however, are finding applica-

tions in a variety of domains including robotic teams,
distributed control, resource management, collaborative
decision support systems, data mining, and more [2],
where emergent behaviour and complexity arise from
agents co-evolving together. Moreover there are a num-
ber of situations where multi-agent systems are the most
natural way of looking at a system.
Unfortunately, when multiple agents share the envi-

ronment and influence each other, the convergence guar-
antees of RL traditional methods such as Q-Learning no
longer hold, since from the perspective of any individual
agent the environment becomes non-stationary [20].

2. RelatedWork

The related work in this area suggests there is not a
good and generic approach to learning in multi-agent
settings. The simplest of them is to use independently
learning agents. However, [18] tried this approach, while
[11] concluded it does not perform well in practice, since

it is impossible to rely on experience replay in a non-
stationary environment. To address this problem, it is
possible either to input other agent’s policy parameters
to the Q function [19] or explicitly add the iteration
index to the replay buffer [5], using importance sampling.
Another way of facing multi-agent systems is to

note that agent interactions can either be cooperative,
competitive, or both, and design algorithms only for
a particular nature of interaction. The most studied of
which are cooperative, where it is assumed the actions
of other agents are made to improve collective reward.
Another approach is forcing cooperation via sharing of
policy parameters, which requires homogeneous agent
capabilities. The main problem with these algorithms is
that they are generally not applicable in competitive or
mixed settings.
Recent work focused on learning grounded coopera-

tive communication protocols between agents to solve
various tasks [3, 13, 14], which yields solutions only
applicable when the communication between agents is
carried out over a dedicated, differentiable communica-
tion channel.
Acknowledging the merits and faults of traditional RL

approaches, Lowe, Ryan, et al. (2017) inspired by [3]
adapted actor-critic methods to develop a general-
purpose multi-agent learning algorithm that allows
agents to operate under conditions where learned poli-
cies can only use local information and there are no
assumptions regarding either the model of the environ-
ment dynamics, or the structure on the communication
method between agents. Additionally, it was also devised
a method to improve the stability of multi-agent policies
by training agents with an ensemble of policies.

3. Methods
The authors methodology consisted on considering an

extension of Markov decision processes called partially
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observable Markov games and adopting the framework
of centralized training with decentralized execution, i.e.
it was allowed for the policies to use extra infor-
mation only during training. Thus proposing a simple
extension of actor-critic policy gradient methods where
the critic is augmented with extra information about the
policies of other agents.
To obtain multi-agent policies that are more robust

to changes in the policy of competing agents, authors
suggested yet to train agents with policy ensembles, in
a way of coping with the environment non-stationarity
due to the agents’ changing policies. Lowe, Ryan, et al.
(2017) did so by randomly selecting one particular sub-
policy for each agent to execute, at each episode.

4. Experiments
To perform experiments, a two-dimensional world

with continuous space and discrete time was adopted
and, although agents could take physical and commu-
nication actions, it was not assumed all agents had
identical action and observation spaces, nor that they
acted according to the same policy π. The tasks con-
sidered consisted of a battery of both cooperative and
competitive games requiring a series of different physical
and communication actions in order to achieve the best
reward. A list of the played games is presented in Table 1.

Table 1
Designed game tests

Games Setting

Cooperative communication Cooperative
Cooperative navigation Cooperative
Keep-away Mixed
Physical deception Competitive / Mixed
Predator-prey Competitive / Mixed
Covert communication Competitive

5. Results
To evaluate the quality of policies learned in com-

petitive settings, agents trained using the proposed al-
gorithm (MADDPG) were pitched against agents trained
under traditional RL methods and the resulting success
of the agents and adversaries was compared.
In a nutshell, the proposed method significantly out-

performed traditional RL algorithms in every environ-
ment, with the only downside being the input space of
Q grows linearly with the number of agents N, as he
authors point out.
It should also be mentioned during these tests a

peculiar behaviour of traditional RL methods agents lead
to a surprising hypothesis. Namely that many of the

multi-agent methods previously proposed for scenarios
with short time horizons may not generalize to more
complex tasks. In the heart of this idea is the fact that
in the cooperative communication scenario traditional
RL methods failed to learn the correct behaviour, and
in practice one of agents learned to ignore the other,
jeopardizing the completion of the task. Observations
suggest this is due to the lack of a consistent gradient
signal, problem that is exacerbated as the number of time
steps grows.
Additionally, it was also shown to be possible to

improve the performance of the MADDPG algorithm by
training agents with an ensemble of policies. In order to
assess the effectiveness of policy ensembles, the authors
focused on competitive environments, enforcing that
cooperative agents should have the same policies at each
episode, and similarly for the adversaries. Observations
ultimately showed agents with policy ensembles were
stronger than those with a single policy. The results ob-
tained reinforced the authors’ belief of such an approach
being generally applicable to any multi-agent algorithm

6. Conclusions
If a scientific paper is as relevant as the questions it

arises, this one proves to be of significant importance
in the field of Reinforcement Learning, since it ques-
tions the generalization of previous multi-agent methods
proposed for scenarios with short time horizons, while
presenting both a general-purpose multi-agent learning
algorithm that outperforms traditional RL methods, and
a generally applicable way of improving convergence
speed in RL training.
The designed tests proved to be suitable, the re-

sults clear and its analysis thorough. Notwithstanding,
concurrently to this paper, [4] proposed a similar idea
of using policy gradient methods with a centralized
critic. Although the latter focused only on cooperative
environments, it would be interesting to compare the
performance of both methods using the same battery of
tests used to evaluate the MADDPG algorithm.
All in all, this paper proposes a generic solution to

a specific, practical problem. And although the intuition
underlying the core idea yields some parallels with real
agents, in the sense that even humans usually train
together sharing all kinds of information before being
able to act in a decentralized, autonomous and coor-
dinated way (e.g. collective sports, military exercises),
from an Artificial Intelligence point of view it fell
short on expectations, since there was no allusion on
how were agents coordinating themselves, or what was
their decision making process, which renders the agents’
individual learning and collective coordination processes
uninterpretable.
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Moreover, from a practical (and probably biased Con-
trol Systems) point of view, analysing the videos of the
experimental results, one cannot but conclude there is
yet a long way until this type of general purpose multi-
agent RL methods to be able to perform well in real
world situations, since agents exhibited an oscillatory
behaviour around their final target positions rather than
remaining there still.
The aforementioned problems may seem of minor

importance if one focus only on inconsequent tasks such
as trivial games, but to deal with both lack of inter-
pretability and oscillatory behaviour are of paramount
importance in real situations, specially if human safety
can be compromised. Examples of these situations range
from simple logistic tasks such as robots (mobile or fixed)
operating on environments where they are allowed to
coexist with human operators to more complex tasks
such as rescue and security patrolling missions.
To cope with the lack of interpretability the most

obvious (and possibly the simplest) is to switch from
a black-box to an expert knowledge paradigm, where
instead of expecting agents to come up with opaque
solutions, the agent designer makes use of knowledge
from experts and inputs it into the agent’s decision
making function.
From a classical AI point of view, one possible solution

is to implement a belief–desire–intention (BDI) model
of agency such as the Procedural Reasoning System
(PRS) system [6, 7, 21], where the planning module
simply chooses one of the plans from a library of expert
knowledge designed plans [22].
On the other hand, a typical Control Systems ap-

proach would be to make use of Fuzzy Logic as a
framework for intelligent decision support. By definition
fuzzy logic provides a way to develop and code rule-
based behaviours, based on expert knowledge. Besides
interpretability, fuzzy logic has yet the advantage of
being able to be refined as new information becomes
available [15]. Moreover, since the fuzzy logic approach
can deal with various situations without analytical model
of environments, it is easy to integrate it with Reinforce-
ment Learning techniques [1, 23].
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